2862 independent reflections

 $R_{\rm int} = 0.041$

1755 reflections with $I > 2\sigma(I)$

mixture of

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(5-n-Hexyl-2-hydroxymethyl-1,3-dioxan-2-yl)methanol

Min Zhang,^a Xian-You Yuan^a and Seik Weng Ng^{b*}

^aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 13 October 2010; accepted 14 October 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.173; data-to-parameter ratio = 18.6.

In the title compound, $C_{12}H_{24}O_4$, the dioxane ring adopts a chair conformation; the n-hexyl chain, which occupies an equatorial position, has an extended zigzag conformation. In the crystal, molecules are connected by $O-H \cdots O$ hydrogenbonds into a zigzag chain running along the b axis, giving rise to a herringbone pattern.

Related literature

For a related structure, see: Luo et al. (2008).

Experimental

Crystal data C12H24O4 $M_r = 232.31$ Monoclinic, $P2_1/n$ a = 13.6602 (10) Åb = 5.9370 (5) Å c = 16.4268 (12) Å $\beta = 97.737 (1)^{\circ}$

 $V = 1320.10 (18) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 173 K0.40 \times 0.25 \times 0.20 mm

Data collection

Bruker SMART APEX diffractometer 7438 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture o
$wR(F^2) = 0.173$	independent and constrained
S = 1.06	refinement
2862 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{matrix} O3-H3\cdots O4^i\\ O4-H4\cdots O3^{ii} \end{matrix}$	0.84 (1) 0.85 (1)	1.86 (1) 1.81 (1)	2.664 (2) 2.630 (2)	162 (3) 164 (3)
	. 1 . 1	. 3 (**)		

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, y - 1, z.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the S&T Technology Planning Project of Hunan Province (No. 2010 N K3007), the Key Scientific Research Project of Hunan Provincial Education Department (No. 08 A023), the NSF of Hunan Province (09 J J3028), the Key Construction Project of Hunan Province (No. 2000-180) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5377).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Luo, Y.-M., Liu, X.-M., Yuan, X.-Y., Zhang, M. & Ng, S. W. (2008). Acta Cryst. E64. 01536.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, o2917 [doi:10.1107/S1600536810041401]

(5-n-Hexyl-2-hydroxymethyl-1,3-dioxan-2-yl)methanol

M. Zhang, X.-Y. Yuan and S. W. Ng

Comment

A previous study reported the crystal structure of 5,5-bis(hydroxylmethyl)-2-phenylmethyl-1,3-dioxane, which was synthesized by the condensation of 2,2-bis(hydroxymethyl)-1,3-propanediol and an aromatic aldehyde (benzaldehyde) (Luo *et al.*, 2008). A variation of the synthesis with an aliphatic aldehyde under similar reaction conditions yielded a 1,3-dixoxane having the hydroxyl groups connected to another atom of the chair-shaped ring. In the molecule of the $C_{12}H_{24}O_4$ (Scheme I, Fig. 1), the *n*-hexyl chain, which occupies an equatorial position, has an extended zigzag conformation. The hydroxy unit of one molecule is a hydrogen-bond donor to the hydroxy unit of an adjacent molecule so that the two O–H…O hydrogen bonds give rise to a herring-bone ribbon that runs along the *b*-axis of the monoclinic unit cell (Fig. 2).

Experimental

2,2-Bis(hydroxymethyl)-1,3-propanediol (13.0 g, 96 mmol) and *N*,*N*-dimethylformamide (100 ml) were heated until the 2,2-bis(hydroxymethyl)-1,3-propanediol dissolved completely. *n*-Heptanal (10.1 g, 89 mmol) and *p*-toluenesulfonic acid monohydrate (1 g, 5 mmol) were added. The solution was heated 363–373 K 5 h. The solution was cooled and ethyl acetate (100 ml) was added to dissolve the residue after DMF was removed by evaporation. The solution was washed successively with water and 5% sodium bicarbonate (50 ml); the solution was dried over sodium sulfate. The solvent was evaporated to give a solid that was recrystallized from ethyl acetate to yield 16.5 g (70%) of colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$.

The hydroxy H-atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of O–H 0.84 ± 0.01 Å.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of $C_{12}H_{24}O_4$ at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2. Hydrogen-bonded ribbon structure.

(5-n-Hexyl-2-hydroxymethyl-1,3-dioxan-2-yl)methanol

Crystal data

C ₁₂ H ₂₄ O ₄	F(000) = 512
$M_r = 232.31$	$D_{\rm x} = 1.169 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2106 reflections
a = 13.6602 (10) Å	$\theta = 2.5 - 27.0^{\circ}$
b = 5.9370 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 16.4268 (12) Å	<i>T</i> = 173 K
$\beta = 97.737 (1)^{\circ}$	Prism, colorless
$V = 1320.10 (18) \text{ Å}^3$	$0.40 \times 0.25 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX diffractometer	1755 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.041$
graphite	$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
ω scans	$h = -17 \rightarrow 17$
7438 measured reflections	$k = -7 \rightarrow 7$
2862 independent reflections	$l = -20 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.173$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0932P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2862 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
154 parameters	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$

2 restraints

$$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$$

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.21236 (8)	1.1104 (2)	0.46544 (7)	0.0274 (3)
O2	0.08583 (9)	1.3743 (2)	0.45699 (9)	0.0449 (4)
O3	0.25706 (13)	1.7500 (2)	0.65335 (8)	0.0449 (4)
Н3	0.2562 (18)	1.699 (4)	0.7006 (8)	0.063 (8)*
O4	0.24968 (15)	1.1821 (2)	0.68721 (8)	0.0551 (5)
H4	0.257 (2)	1.051 (2)	0.6681 (16)	0.083 (9)*
C1	0.22572 (13)	1.4192 (3)	0.56451 (10)	0.0259 (4)
C2	0.29973 (15)	1.5895 (3)	0.60499 (12)	0.0358 (5)
H2A	0.3529	1.5084	0.6402	0.043*
H2B	0.3302	1.6693	0.5618	0.043*
C3	0.17790 (16)	1.2926 (3)	0.62952 (12)	0.0390 (5)
НЗА	0.1398	1.3998	0.6590	0.047*
H3B	0.1313	1.1794	0.6024	0.047*
C4	0.14640 (15)	1.5360 (3)	0.50544 (12)	0.0387 (5)
H4A	0.1046	1.6292	0.5369	0.046*
H4B	0.1780	1.6370	0.4687	0.046*
C5	0.27918 (13)	1.2561 (3)	0.51385 (11)	0.0275 (4)
H5A	0.3173	1.3429	0.4774	0.033*
H5B	0.3264	1.1648	0.5512	0.033*
C6	0.14157 (13)	1.2334 (3)	0.41238 (11)	0.0321 (5)
H6	0.1756	1.3257	0.3737	0.039*
C7	0.07331 (14)	1.0673 (4)	0.36474 (12)	0.0391 (5)
H7A	0.0179	1.1508	0.3333	0.047*
H7B	0.0452	0.9678	0.4040	0.047*
C8	0.12197 (14)	0.9224 (3)	0.30569 (12)	0.0342 (5)
H8A	0.1780	0.8402	0.3368	0.041*
H8B	0.1489	1.0211	0.2655	0.041*
C9	0.05174 (14)	0.7536 (4)	0.25968 (13)	0.0393 (5)
H9A	0.0248	0.6562	0.3002	0.047*
H9B	-0.0043	0.8368	0.2290	0.047*
C10	0.09718 (14)	0.6053 (4)	0.20005 (11)	0.0355 (5)
H10A	0.1277	0.7026	0.1615	0.043*
H10B	0.1505	0.5148	0.2311	0.043*
C11	0.02531 (15)	0.4480 (4)	0.15108 (14)	0.0457 (6)
H11A	-0.0268	0.5389	0.1186	0.055*
H11B	-0.0069	0.3545	0.1897	0.055*
C12	0.07088 (17)	0.2939 (4)	0.09337 (13)	0.0473 (6)
H12A	0.1047	0.3843	0.0558	0.071*
H12B	0.0189	0.2039	0.0617	0.071*
H12C	0.1185	0.1936	0.1252	0.071*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0304 (7)	0.0258 (7)	0.0243 (6)	0.0012 (5)	-0.0030 (5)	-0.0047 (5)
O2	0.0375 (8)	0.0450 (9)	0.0482 (9)	0.0139 (7)	-0.0091 (7)	-0.0197 (7)
O3	0.0890 (12)	0.0223 (7)	0.0231 (7)	-0.0018 (7)	0.0063 (8)	-0.0032 (6)
O4	0.1172 (14)	0.0244 (8)	0.0241 (7)	-0.0002 (9)	0.0109 (8)	0.0009 (6)
C1	0.0359 (10)	0.0209 (9)	0.0211 (9)	-0.0008 (7)	0.0041 (7)	-0.0013 (7)
C2	0.0487 (12)	0.0298 (11)	0.0290 (10)	-0.0094 (9)	0.0054 (9)	-0.0058 (8)
C3	0.0559 (13)	0.0301 (11)	0.0349 (11)	-0.0091 (9)	0.0200 (10)	-0.0060 (8)
C4	0.0477 (12)	0.0305 (11)	0.0352 (11)	0.0093 (9)	-0.0046 (9)	-0.0078 (8)
C5	0.0278 (9)	0.0316 (10)	0.0221 (9)	-0.0014 (7)	-0.0002 (7)	-0.0045 (7)
C6	0.0344 (10)	0.0338 (11)	0.0259 (10)	0.0041 (8)	-0.0038 (8)	-0.0051 (8)
C7	0.0301 (10)	0.0468 (13)	0.0373 (11)	0.0054 (9)	-0.0064 (9)	-0.0119 (9)
C8	0.0335 (10)	0.0400 (12)	0.0269 (9)	-0.0021 (9)	-0.0034 (8)	-0.0051 (8)
C9	0.0288 (10)	0.0498 (13)	0.0364 (11)	0.0018 (9)	-0.0059 (9)	-0.0127 (9)
C10	0.0338 (10)	0.0437 (12)	0.0282 (10)	-0.0045 (9)	0.0014 (8)	-0.0039 (9)
C11	0.0353 (11)	0.0528 (14)	0.0464 (12)	-0.0015 (10)	-0.0035 (9)	-0.0196 (10)
C12	0.0541 (13)	0.0490 (14)	0.0388 (12)	-0.0057 (11)	0.0059 (11)	-0.0131 (10)

Geometric parameters (Å, °)

O1—C6	1.415 (2)	C6—C7	1.503 (3)
O1—C5	1.421 (2)	С6—Н6	1.0000
O2—C6	1.403 (2)	C7—C8	1.516 (3)
O2—C4	1.436 (2)	С7—Н7А	0.9900
O3—C2	1.415 (2)	С7—Н7В	0.9900
O3—H3	0.84 (1)	C8—C9	1.517 (3)
O4—C3	1.428 (3)	C8—H8A	0.9900
O4—H4	0.85 (1)	C8—H8B	0.9900
C1—C2	1.519 (2)	C9—C10	1.511 (3)
C1—C4	1.521 (3)	С9—Н9А	0.9900
C1—C3	1.523 (2)	С9—Н9В	0.9900
C1—C5	1.525 (2)	C10-C11	1.507 (3)
C2—H2A	0.9900	C10—H10A	0.9900
C2—H2B	0.9900	C10—H10B	0.9900
С3—НЗА	0.9900	C11—C12	1.510 (3)
С3—Н3В	0.9900	C11—H11A	0.9900
C4—H4A	0.9900	C11—H11B	0.9900
C4—H4B	0.9900	C12—H12A	0.9800
C5—H5A	0.9900	C12—H12B	0.9800
С5—Н5В	0.9900	C12—H12C	0.9800
C6—O1—C5	111.39 (13)	O1—C6—H6	109.7
C6—O2—C4	112.06 (13)	С7—С6—Н6	109.7
С2—О3—Н3	109.7 (18)	C6—C7—C8	114.28 (15)
C3—O4—H4	106.1 (19)	С6—С7—Н7А	108.7
C2—C1—C4	110.53 (16)	С8—С7—Н7А	108.7

C2—C1—C3	110.16 (14)	С6—С7—Н7В	108.7
C4—C1—C3	109.65 (15)	С8—С7—Н7В	108.7
C2—C1—C5	108.80 (14)	H7A—C7—H7B	107.6
C4—C1—C5	107.08 (14)	С7—С8—С9	113.05 (16)
C3—C1—C5	110.57 (15)	C7—C8—H8A	109.0
O3—C2—C1	113.19 (15)	С9—С8—Н8А	109.0
O3—C2—H2A	108.9	C7—C8—H8B	109.0
C1—C2—H2A	108.9	C9—C8—H8B	109.0
O3—C2—H2B	108.9	H8A—C8—H8B	107.8
C1—C2—H2B	108.9	C10—C9—C8	114.86 (16)
H2A—C2—H2B	107.8	С10—С9—Н9А	108.6
O4—C3—C1	111.78 (16)	С8—С9—Н9А	108.6
O4—C3—H3A	109.3	С10—С9—Н9В	108.6
С1—С3—НЗА	109.3	С8—С9—Н9В	108.6
O4—C3—H3B	109.3	H9A—C9—H9B	107.5
С1—С3—Н3В	109.3	C11—C10—C9	114.35 (16)
НЗА—СЗ—НЗВ	107.9	C11—C10—H10A	108.7
O2—C4—C1	110.89 (15)	C9—C10—H10A	108.7
O2—C4—H4A	109.5	C11—C10—H10B	108.7
C1—C4—H4A	109.5	C9—C10—H10B	108.7
O2—C4—H4B	109.5	H10A—C10—H10B	107.6
C1—C4—H4B	109.5	C10-C11-C12	114.61 (17)
H4A—C4—H4B	108.0	C10-C11-H11A	108.6
O1—C5—C1	111.91 (13)	C12-C11-H11A	108.6
O1—C5—H5A	109.2	C10-C11-H11B	108.6
C1—C5—H5A	109.2	C12-C11-H11B	108.6
O1—C5—H5B	109.2	H11A—C11—H11B	107.6
C1—C5—H5B	109.2	C11—C12—H12A	109.5
H5A—C5—H5B	107.9	C11-C12-H12B	109.5
O2—C6—O1	111.11 (14)	H12A—C12—H12B	109.5
O2—C6—C7	108.74 (14)	C11-C12-H12C	109.5
O1—C6—C7	107.86 (15)	H12A—C12—H12C	109.5
O2—C6—H6	109.7	H12B-C12-H12C	109.5
C4—C1—C2—O3	62.40 (19)	C4—C1—C5—O1	-52.67 (19)
C3—C1—C2—O3	-58.9 (2)	C3-C1-C5-01	66.74 (19)
C5—C1—C2—O3	179.70 (15)	C4—O2—C6—O1	60.4 (2)
C2—C1—C3—O4	-57.4 (2)	C4—O2—C6—C7	179.00 (16)
C4—C1—C3—O4	-179.27 (15)	C5—O1—C6—O2	-60.02 (18)
C5—C1—C3—O4	62.89 (19)	C5-01-C6-C7	-179.11 (14)
C6—O2—C4—C1	-57.7 (2)	O2—C6—C7—C8	173.00 (17)
C2-C1-C4-O2	170.43 (14)	O1—C6—C7—C8	-66.4 (2)
C3—C1—C4—O2	-67.93 (19)	С6—С7—С8—С9	178.94 (17)
C5—C1—C4—O2	52.08 (19)	C7—C8—C9—C10	180.00 (18)
C6	57.40 (18)	C8-C9-C10-C11	-176.53 (18)
C2-C1-C5-01	-172.15 (14)	C9—C10—C11—C12	-178.08 (19)
Hydrogen-bond geometry (Å, °)			
D—H····A	<i>D</i> —Н	H4	D····A D—H····A

supplementary materials

O3—H3···O4 ⁱ	0.84 (1)	1.86 (1)	2.664 (2)	162 (3)
O4—H4···O3 ⁱⁱ	0.85 (1)	1.81 (1)	2.630 (2)	164 (3)
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+3/2$; (ii) $x, y-1/2$	1, <i>z</i> .			

